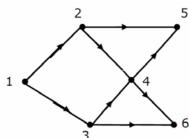
GATE question papers - Computer Science and Engineering 2007 (CS)

Q.1 - Q.20 Carry One Mark Each

4	0 ! -! !	C - 11 !			-1		6 12	c /.		11
Ι.	Consider the	e rollowing	two	statements	about	tne	tunction	т (х	() =	X

- P. f(x) is continuous for all real values of x
- Q. f(x) is differentiable for all real values of x

Which of the following is TRUE?


- (A) P is true and Q is false.
- (B) P is false and Q is true.
- (C) Both P and Q are true.
- (D) Both P and Q are false.

2. Let S be a set of n elements. The number of ordered pairs in the largest and the smallest equivalence relations on S are:

- (A) n and n
- (B) n^2 and n
- (C) n^2 and 0
- (D) n and 1

- (A) n^2
- (B) 2
- (C) 2^2
- (D) 2^{n²}

- (A) 9 edges and 5 vertices
- (B) 9 edges and 6 vertices
- (C) 10 edges and 5 vertices
- (D) 10 edges and 6 vertices
- 5. Consider the DAG with $= V = \{1, 2, 3, 4, 5, 6\}$, shown below.

Which of the following is NOT a topological ordering?

- (A) 123456
- (B) 132
- 132456
- 132465
- (D) 3 2 4 1 6 5

- (A) Membership problem for CFGs.
- (B) Ambiguity problem for CFGs.

Equivalence problem for FSAs.

- (C) Finiteness problem for FSAs.
- Which of the following is TRUE?(A) Every subset of a regular set is regular.
- (B) Every finite subset of a non-regular set is regular.
- (C) The union of two non-regular sets is not regular.
- (D) Infinite union of finite sets is regular.

(A)

7.

(B)

(C)

9

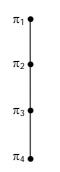
(D)

(D) 10

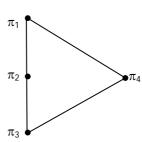
$$f(w \times y z) = \sum (1,3,4,6,9,11,12,14)$$

The function is:

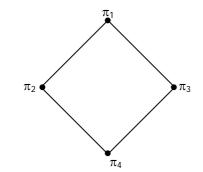
- (A) independent of one variables.
- (B) independent of two variables.
- (C) independent of three variables.
- (D) dependent on all the variables.

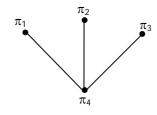

Previous GATE question Papers	GATE online tests	GATE Question Bank	GATE textbooks	Forum	GATE Coaching	Study tips and
articles Motivation Factors and	many more at www	guestionpapers.net.in				

10.	Consider a 4-way set associative cache consigenerates a 20-bit address of a word in mair WORD fields are respectively: (A) 9, 6, 5 (B) 7, 7, 6				
11.	Consider a disk pack with 16 surfaces, 128 to data are stored in a bit serial manner in a se required to specify a particular sector in the (A) 256 Mbyte, 19 bits (C) 512 Mbyte, 20 bits	ctor. The cap	acity of the disk	pack ar	
12.	The height of a binary tree is the maximum number of nodes in a binary tree of height h (A) 2 ^h -1 (B) 2 ^{h-1} -1	is:	ges in any root 2 ^{h+1} –1	to leaf p (D)	ath. The maximum 2 ^{h+1}
13.	The maximum number of binary trees that can (A) 1 (B) 5	an be formed (C)	with three unla	beled no	odes is:
14.	Which of the following sorting algorithms has (A) Merge sort (B) Bubble sort		vorst-case comp Quick sort	olexity? (D)	Selection sort
15.	Consider the following segment of C-code: int j, n; $j = 1;$ while $(j <= n)$ $j = j*2;$ The number of comparisons made in the exercise (A) $[\log_2 n] + 1$ (B) n		loop for any n [log₂n]	> 0 is: (D)	[log ₂ n] + 1
16.	Group 1 contains some CPU scheduling algor entries in Group 1 to entries in Group 2. Group I	rithms and Gr Group		some ap	plications. Match
	(Q) Rate Monotonic Scheduling (2)	Guaranteed S Real-time Sch Thread Sched (B) (D)	neduling	R - 3 R - 2	
17.	Consider the following statements about use following statements is FALSE?	r level thread	s and kernel lev	el thread	ds. Which one of the
	 (A) Context switch time is longer for ker (B) User level threads do not need any h (C) Related kernel level threads can be s system. (D) Blocking one kernel level thread blocking 	nardware supp scheduled on	ads than for use port. different proces	er level ti	nreads.
18.	 (A) Context switch time is longer for ker (B) User level threads do not need any h (C) Related kernel level threads can be s system. 	nardware sup scheduled on cks all related	ads than for use port. different proces	er level the ssors in a	nreads. a multi-processor
18. 19.	 (A) Context switch time is longer for ker (B) User level threads do not need any h (C) Related kernel level threads can be s system. (D) Blocking one kernel level thread blocking one of the following is a top-down part (A) Recursive descent parser. 	nardware sup scheduled on cks all related rser? (B) (D)	ads than for use port. different proces threads. Operator prece An LALR (k) pa	er level the sors in a second particular par	nreads. a multi-processor


Q.21 - Q.75 Carr y Two Marks Each

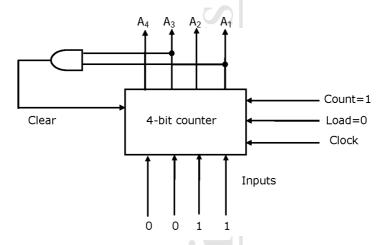
- 21. How many different non-isomorphic Abelian groups of order 4 are there?
 - (A)
- **A**)
- (B)
- (C)
- 4
- (D) 5
- 22. Let Graph(x) be a predicate which denotes that x is a graph. Let Connected(x) be a predicate which denotes that x is connected. Which of the following first order logic sentences DOES NOT represent the statement: "Not every graph is connected"?
 - (A) $\neg \forall x (Graph(x) \Rightarrow Connected (x))$
- B) $\exists x (Graph (x) \land \neg Connected (x))$
- (C) $\neg \forall x (\neg Graph(x) \land Connected (x))$ (D)
- D) $\forall x \text{ (Graph (x)} \Rightarrow \neg \text{Connected (x))}$
- 23. Which of the following graphs has an Eulerian circuit?
 - (A) Any k-regular graph where k is an even number.
 - (B) A complete graph on 90 vertices.
 - (C) The complement of a cycle on 25 vertices.
 - (D) None of the above
- 24. Suppose we uniformly and randomly select a permutation from the 20! Permutations of 1, 2, 3,....., 20. What is the probability that 2 appears at an earlier position than any other even number in the selected permutation?
 - (A) $\frac{1}{2}$
- (B) $\frac{1}{10}$
- (C) $\frac{9!}{20}$
- (D) None of these
- 25. Let A be a 4 \times 4 matrix with eigenvalues -5, -2, 1, 4. Which of the following is an eigenvalue of $\begin{bmatrix} A & I \\ . & . \end{bmatrix}$, where I is the 4 \times 4 identity matrix?
 - (A) -5
- (B) -
- (C)
- (D)
- Consider the set $S = \{a, b, c, d\}$. Consider the following 4 partitions π_1 , π_2 , π_3 , π_4 , on S: $\pi_1 = \{\overline{abcd}\}$, $\pi_2 = \{\overline{ab}, \overline{cd}\}$, $\pi_3 = \{\overline{abc}, \overline{d}\}$, $\pi_4 = \{\overline{a}, \overline{b}, \overline{c}, \overline{d}\}$. Let p be the partial order on the set of partitions $S' = \{\pi_1, \pi_2, \pi_3, \pi_4, \}$ defined as follows: $\pi_i p \pi_j$ if and only if π_i refines π_j . The poset diagram for (S', p) is:


(A)


(B)

(C)

(D)


27.

27.		$\{[1, -1, 0]^T, [$	$x_3 = 0, x_3$ 1, 0, -1] ¹ 1, 0, -1] ¹	where, x ^T = } is a bas	$= [x_1, x_2, x_3]$ is for the sub] ^T }. Which of tospace X. dent set, but it c			refore is
	(C) (D)	X is not a subs	space of	\mathbb{R}^3	Jet				
28.	Conside	er the series x _{n+}	$_1 = \frac{x_n}{2} +$	$\frac{9}{8x_n}$, $x_0 =$	0.5 obtained	d from the Newt	on-Raphs	on method. Th	ne series
	converg			_	92				
	(A)	1.5	(B)	$\sqrt{2}$	(C)	1.6	(D)	1.4	
29.		num state deter nd 1s in are divis 15 states			spectively) h	ing the language as 10 states	e L = {w (D)	$w \in \{0, 1\}^*,$ 9 states	number
					\Box				
30.		guage L = {0 ⁱ not recursive	21' i ≥ C)} over the			and is a d	atarministis CE	1
	(A) (C)	is a regular lar	nguage.		(B) (D)			eterministic CF CFL but a CFL.	L
31.	Which o	of the following		s is regula	ir?				
	(A) (C)	$\{ww^{R} w \in \{0, \{wxw^{R} x, w \in \{0, \{wx^{R} x, w \in \{0, \{wxw^{R} x, w \in \{0, \{wxw^{R} x, w \in \{0, \{wx$			(B) (D)	$\{ww^R x x, w $ $\{xww^R x, w$	$\in \{0,1\}^+$ $\in \{0,1\}^+$	} }	
32.	f? (P)	$(x, x, y, z) = \sum (0)^{2} (x', y', z' + w', xy')^{2} (x', y', z' + wx', y')^{2} (x', y', z' + wx', y', z' + wx', y')^{2} (x', y', z' + wx', y', z' + wx', y')^{2} (x', y', z' + wx', y', z' + wx', y')^{2} (x', y', z' + wx', y', z' + wx', y', z' + wx', y')^{2} (x', y', z' + wx', y', z' + wx', y', z' + wx', y')^{2} (x', y', z' + wx', y', z' + wx', y', z' + wx', y')^{2} (x', y', z' + wx', z' + wx'$	' + wy' z '' + xz '' + xyz +	+ XZ). Which of the control of the contr	he following exp R and S	ressions a	are NOT equiva	alent to
	(1)	i only	(5)	Q dila 5		it did 5	(D)	o only	
33.	Conside	the connective * er the following of \pi P: X = Y * Z of the following	expressic	ons P, Q ar Q: Y = X	nd R.	$\mathbf{H} \mathbf{Y} \mathbf{as} : \mathbf{X} * \mathbf{Y} = \mathbf{X}$ $\mathbf{R} : \mathbf{X} * \mathbf{Y} * \mathbf{Z} = \mathbf{X} * \mathbf{Z} * \mathbf{Z} * \mathbf{Z} = \mathbf{X} * \mathbf{Z} * \mathbf{Z} * \mathbf{Z} = \mathbf{Z} * \mathbf{Z} * \mathbf{Z} * \mathbf{Z} = \mathbf{Z} * \mathbf{Z} * \mathbf{Z} * \mathbf{Z} * \mathbf{Z} = \mathbf{Z} * \mathbf{Z} * \mathbf{Z} * \mathbf{Z} = \mathbf{Z} * Z$. Let Z =X * Y	
	(A) (C)	Only P and Q and R a	are valid.		(B) (D)	Only Q and F All P, Q, R ar		i .	
34.			What is e			wed to be used e multiplexer ne 2 ⁿ⁺¹ line to 1 2 ⁿ⁻² line to 1	eded? I line	ent any Boole	an
35.	In a loo inputs A The exp Consider are avainputs.	k-ahead carry g A_i and B_i are give $P_i = A_i \oplus B_i$ and pressions for the $S_i = P_i \oplus C_i$ and er a two-level log ilable for the car The number of	generator en by: d G _i = A _i e sum bit d C _{i+1} = (gic imple rry gener AND gate	B _i S _i and the G _i + P _i C _i , we mentation rator circulities and OR	generate fur carry bit C _{i+} where is the i of the look-a t and that the gates needed	nction G _i and the of the look-ahe nput carry. head carry gene e AND and OR g d to implement to uts are respectives.	ad carry a erator. Ass ates can l the look-a	adder are giver sume that all P nave any numb	n by: and Gi per of

36. The control signal functions of a 4-bit binary counter are given below (where X is "don't ca re"):

	Clear	Clock	Load	Count	Function
1		Χ	Х	Х	Clear to 0
0		Х	0	0	No change
0		\uparrow	1	Х	Load input
0		\uparrow	0	1	Count next

The counter is connected as follows:

Assume that the counter and gate delays are negligible. If the counter starts at 0, then it cycles through the following sequence:

(A) 0, 3, 4 (B)

0, 3, 4, 5

 \sim (C)

0, 1, 2, 3, 4

(D)

0, 1, 2, 3, 4, 5

37. Consider a pipelined processor with the following four stages:

IF: Instruction Fetch

ID: Instruction Decode and Operand Fetch

EX: Execute

WB: Write Back

The IF, ID and WB stages take one clock cycle each to complete the operation. The number of clock cycles for the EX stage depends on the instruction. The ADD and SUB instructions need 1 clock cycle and the MUL instruction needs 3 clock cycles in the EX stage. Operand forwarding is used in the pipelined processor. What is the number of clock cycles taken to complete the following sequence of instructions?

ADD R2, R1, R0 R2
$$\leftarrow$$
 R1 + R0 MUL R4, R3, R2 R4 \leftarrow R3 * R2 SUB R6, R5, R4 R6 \leftarrow R5 - R4

(A) 7 (B)

(C)

10

3. 2

(D) 14

38. The following postfix expression with single digit operands is evaluated using a stack:

Note that ^ is the exponentiation operator. The top two elements of the stack after the first * is evaluated are:

(A) 6, 1 (B)

5.7

(C)

(D)

39. The inorder and preorder traversal of a binary tree are

d b e a f c g and a b d e c f g, respectively

The postorder traversal of the binary tree is:

(A) debfgca (B)

edbgfca

(C)

edbfgca

(D)

defgbca

1, 5

40.	Assuming sequence location	ng the hash tab ce 1, 3, 8, 10 is in the table.	le is initia inserted	ally empty	, which of the able using clo	osed hashing? Not	contents e that -	n (3x + 4) mod7. of the table when the denotes an empty
	(A) (C)	8, - , - , - , - , 1, - , - , - , - ,			(B) (D)	1, 8, 10, - , - 1, 10, 8, - , -		
41.	In an u		irected c ntly, in te rithm sta	rms of tim orting from	ne complexity n S. (B)		orithm	to every other node is ting from S.
42.		<pre>if (n ></pre>	0; = 0) retu > 3) ; f(n-2)+2	urn 1;	npaper			
	(A)	s the value of f 5	(5)? (B)	7	(C)	9	(D)	18
43.	of inter	•						Let I be the number 41, and I = 10, what
	(A)	3	(B)	4	(C)	5	(D)	6
44.	In the f	return		return m; 6m;	V. QU			
	How ma	} any recursive ca	ılls are m	ade by th	is function?			
	(A)	$\Theta \log_2 n$	(B)	$\Omega(n)$	(C)	$\Theta(\log_2\log_2 n)$	(D)	$\Theta(\sqrt{n})$
45.	What is	the time comp int DoSomethin if (n < else	ng (int n) <= 2) return	{ 1;	ing recursive			
	(A)	$\Theta(n^2)$	(B)	Θ (n log		Θ(log₂ n)	(D)	$\Theta(\log_2 \log_2 n)$
						-		
46.	Conside	struct CellNode struct	e { CellNOde ement;	e *leftChild		Node represents a	node in	a binary tree:
	int Get\	/alue (struct Ce int value = 0;	llNode *p	otr) {				

The value returned by GetValue when a pointer to the root of a binary tree is passed as its argument is:

- (A) the number of nodes in the tree
- (B) the number of internal nodes in the tree
- (C) the number of leaf nodes in the tree
- (D) the height of the tree
- 47. Consider the process of inserting an element into a Max Heap, where the Max Heap is represented by an array. Suppose we perform a binary search on the path from the new leaf to the root to find the position for the newly inserted element, the number of comparisons performed is:
 - (A) $\Theta(\log_2 n)$
- (B) $\Theta(\log_2 \log_2 n)$ (C)
 -) Θ(r
- (D) $\Theta(n \log_2 n)$
- 48. Which of the following is TRUE about formulae in Conjunctive Normal Form?
 - (A) For any formula, there is a truth assignment for which at least half the clauses evaluate to true.
 - (B) For any formula, there is a truth assignment for which all the clauses evaluate to true.
 - (C) There is a formula such that for each truth assignment, at most one-fourth of the clauses evaluate to true.
 - (D) None of the above.
- 49. Let w be the minimum weight among all edge weights in an undirected connected graph. Let be a specific edge of weight. Which of the following is FALSE?
 - (A) There is a minimum spanning tree containing e.
 - (B) If is not in a minimum spanning tree T, then in the cycle formed by adding e to T, all edges have the same weight.
 - (C) Every minimum spanning tree has an edge of weight w.
 - (D) is present in every minimum spanning tree.
- 50. An array n numbers is given, where n is an even number. The maximum as well as the minimum of these n numbers needs to be determined. Which of the following is TRUE about the number of comparisons needed?
 - (A) At least 2n c comparisons, for some constant, c are needed.
 - (B) At most 1.5 2 comparisons a re needed.
 - (C) At least nlog₂ n comparisons are needed.
 - (D) None of the above.
- 51. Consider the following C code segment:

```
 \begin{array}{l} \text{int IsPrime(n)} \\ \{\\ \text{int i,n;} \\ \text{for(i=2;i<=sqrt(n);i++)} \\ \text{if(n\%i == 0)} \\ \{\text{printf("Not Prime\n"); return 0;} \} \\ \text{return 1;} \\ \} \end{array}
```

Let T (n) denote the number of times the for loop is executed by the program on input n. Which of the following is TRUE?

(A) T (n) =
$$O(\sqrt{n})$$
 and T (n) = $O(\sqrt{n})$ (B) T (n) = $O(\sqrt{n})$ and T (n) = $O(\sqrt{1})$

(C) T (n) = O (n) and T (n) =
$$\Omega(\sqrt{n})$$
 (D) None of the above

52. Consider the grammar with non-terminals $N = \{S, C, S_1\}$, terminals $T = \{a, b, i, t, e\}$, with S as the start symbol, and the following set of rules:

$$S \rightarrow iCtSS \mid a$$

 $S_1 \rightarrow eS \mid \epsilon$
 $C \rightarrow b$

The grammar is NOT LL (1) because:

- (A) it is left recursive (B) it is right recursive (C) it is ambiguous (D) it is not context-free.
- 53. Consider the following two statements:
 P: Every regular grammar is LL (1) Q:
 Every regular set has a LR(1) grammar
 Which of the following is TRUE?
 - (A) Both P and Q are true (B) P is true and Q is false (C) P is false and Q is true (D) Both P and Q a re false
- 54. In a simplified computer the instructions are:

OP R_J, R_i
- Performs R_J OP R_i and stores the result in register. R_i.
- Performs val OP R_i and stores the result in R_i .val
denotes the content of memory location m.

MOV, m R_i
- Moves the content of memory location m to register R_i.
- Moves the content of register R_i to memory location m.

The computer has only to registers, and OP is either ADD or SUB. Consider the following basic block:

$$\dot{t}_1 = a + b$$
 $\dot{t}_2 = c + d$
 $\dot{t}_3 = e - t_2$
 $\dot{t}_4 = t_1 - t_3$

Assume that all operands are initially in memory. The final value of the computation should be in memory. What is the minimum number of MOV instructions in the code generated for this basic block?

(A) 2 (B) 3 (C) 5 (D) 6

55. An operating system uses Shortest Remaining Time first (SRT) process scheduling algorithm. Consider the arrival times and execution times for the following processes:

		Process	Execution	n time	Arrival	time	
		P1	20		0		
		P2	25		15		
		P3	10		30		
		P4	15		45		
What is	the total	waiting time for	process P2?				
(A)	5	(B)	15 ((C) 40		(D)	55

- A virtual memory system uses First in First out (FIFO) page replacement policy and allocates a fixed number of frames to a process. Consider the following statements:
 - P: Increasing the number of page frames allocated to a process sometimes increases the page fault rate.
 - Q: Some programs do not exhibit locality of reference.

Which one of the following is TRUE?

- (A) Both P and Q are true, and Q is the reason for P
- (B) Both P and Q are true, but Q is not the reason for P.
- (C) P is false, but Q is true
- (D) Both P and Q are false.

57. A single processor system has three resource types X, Y and Z, which are shared by three processes. There are 5 units of each resource type. Consider the following scenario, where the column **alloc** denotes the number of units of each resource type allocated to each process, and the column **request** denotes the number of units of each resource type requested by a process in order to complete execution. Which of these processes will finish **LAST**?

```
alloc
                         request
         X
              Υ
                  Ζ
                                  Ζ
   P0
              2
                                  3
                  1
                       1
                            0
   P1
              0
                                  2
         2
                  1
                       0
                            1
   P2
                            2
                                  0
         2
              2
                  1
                       1
         PΟ
(A)
                          (B)
                                    P1
```

- (A) PU (B) P1 (C) P2 (D) None of the above, since the system is in a deadlock.
- 58. Two processes, P1 and P2, need to access a critical section of code. Consider the following synchronization construct used by the processes:

```
/* P1 */
while (true) {
wants1 = true;
while (wants2==true);
/* Critical
Section */
Wants1=false;
}
/* Remainder section */
```

```
/* P2 */
while (true) {
wants2 = true;
while (wants1==true);
/* Critical
Section */
Wants2=false;
}
/* Remainder section */
```

Here, wants1 and wants2 are shared variables, which are initialized to Which one of the following statements is TRUE about the above construct?

- (A) It does not ensure mutual exclusion.
- (B) It does not ensure bounded waiting.
- (C) It requires that processes enter the critical section in strict alternation.
- (D) It does not prevent deadlocks, but ensures mutual exclusion.
- 59. Information about a collection of students is given by the relation studinfo(studId, name, sex). The relation enroll (studId, courseId) gives which student has enrolled for (or taken) what course(s). Assume that every course is taken by at least one male and at least one female student. What does the following relational algebra expression represent?

 $\prod_{courseld} ((\prod_{studid} (\sigma_{sex="female"} (studinfo)) \times \prod_{courseld} (enroll)) - enrooll)$

- (A) Courses in which all the female students are enrolled.
- (B) Courses in which a proper subset of female students are enrolled.
- (C) Courses in which only male students are enrolled.
- (D) None of the above
- 60. Consider the relation (<u>name</u>, sex, supervisorName) with name as the employee key. supervisorName gives the name of the supervisor of the employee under consideration. What does the following Tuple Relational Calculus query produce?

```
{e.name | employee (e)^}
```

```
(\forall x) [\neg employee (x) \lor x. supervisorName \neq e.name \lor x.sex = "male"] \}
```

- (A) Names of employees with a male supervisor.
- (B) Names of employees with no immediate male subordinates.
- (C) Names of employees with no immediate female subordinates.
- (D) Names of employees with a female supervisor.

61.	below. who ge	er the table employee(empld, name, department, salary) and the two employee queries Q ₁ , Q ₂ . Assuming that department 5 has more than one employee, and we want to find the employees t higher salary than anyone in the department 5, which one of the statements is TRUE for any y employee table? Select e.empld From employee e Where not exists (Select * From employee s where s.department = "5" and s.salary >=e.salary)
	Q ₂ :	Select e.empId From employee e Where e.salary > Any (Select distinct salary From employee s Where s.department = "5")
	(A) (B) (C) (D)	Q_1 is the correct query Q_2 is the correct query Both Q_1 and Q_2 produce the same answer. Neither Q_1 nor Q_2 is the correct query
62.	Which (A) (B) (C) (D)	one of the following statements if FALSE? Any relation with two attributes is in BCNF A relation in which every key has only one attribute is in 2NF A prime attribute can be transitively dependent on a key in a 3 NF relation. A prime attribute can be transitively dependent on a key in a BCNF relation.
63.	can hol	der of a leaf node in a B ⁺ – tree is the maximum number of (value, data record pointer) pairs it d. Given that the block size is 1K bytes, data record pointer is 7 bytes long, the value field is 9 ong and a block pointer is 6 bytes long, what is the order of the leaf node? (B) 64 (C) 67 (D) 68
64.	Conside TRUE?	er the following schedules involving two transactions. Which one of the following statements is S_1 : r_1 (x); r_1 (y); r_2 (x); r_2 (y); w_2 (y); w_2 (x) S_2 : r_1 (x); r_2 (x); r_2 (y); r_2 (y); r_3 (y); r_4 (y); r_4 (y); r_4 (y); r_5 (y); r_5 (y); r_6 (y); r_7 (y); r_8 (y);
	(A) (B) (C) (D)	Both S_1 and S_2 are conflict serializable. S_1 is conflict serializable and S_2 is not conflict serializable. S_1 is not conflict serializable and S_2 is conflict serializable. Both S_1 and S_2 are not conflict serializable.
65.		are n stations in a slotted LAN. Each station attempts to transmit with a probability p in each ot. What is the probability that ONLY one station transmits in a given time slot? np $(p\ 1)^{n-1}$ (B) $(1-p)^{n-1}$ (C) $p\ (p\ 1)^{n-1}$ (D) $1-(p\ 1)^{n-1}$
66.		ken ring network the transmission speed is 10 ⁷ bps and the propagation speed is 200 /μs. The 1-bit delay in this network is equivalent to: 500 metres of cable. (B) 200 metres of cable. 20 metres of cable. (D) 50 metres of cable.
67.		dress of a class B host is to be split into subnets with a 6-bit subnet number. What is the sum number of subnets and the maximum number of hosts in each subnet? 62 subnets and 262142 hosts. 63 subnets and 262142 hosts. 64 subnets and 1024 hosts.
68.		essage 11001001 is to be transmitted using the CRC polynomial x^3+1 to protect it from errors. essage that should be transmitted is: 11001001000 (B) 11001001011 11001010 (D) 110010010011

69.	The distance between two stations M and N is L kilometers. All frames are K bits long. The propagation
	delay per kilometer is t seconds. Let R bits/second be the channel capacity. Assuming that processing
	delay is negligible, the minimum number of bits for the sequence number field in a frame for maximum
	utilization, when the sliding window protocol is used, is:

(A)
$$\left[\log_2 \frac{2LtR + 2K}{K}\right]$$

(B)
$$\left[\log_2 \frac{2LtR}{K}\right]$$

(C)
$$\left[\log_2 \frac{2LtR + K}{K} \right]$$

(D)
$$\log_2 \frac{2LtR + K}{K}$$

70. Match the following:

- (P) SMTP
- (1) Application layer
- (Q) BGP
- (2) Transport layer
- (R) TCP
- (3) Data link layer
- (S) PPP
- (4) Network layer
- (5) Physical layer

Common Data Questions

Common Data for Questions 71, 72, 73:

Consider the following program segment. Here R1, R2 and R3 are the general purpose registers.

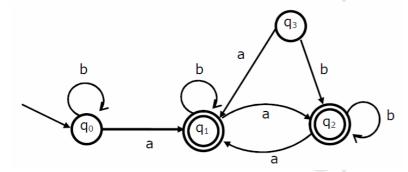
Instruction	Operation	Instruction size (no. of words)
MOV R1, (3000)	R1 ← m [3000]	2
LOOP: MOV R2, (R3)	R2 ← M [R3]	1
ADD R2, R1	R2 ← R1 + R2	1
MOV (R3), R2	M [R3] ← R2	1
INC R3	R3 ← R3 + 1	1
DEC R1	R1 ← R1 − 1	1
BNZ LOOP	Branch on not zero	2
HALT	Stop	1

Assume that the content of memory location 3000 is 10 and the content of the register R3 is 2000. The content of each of the memory locations from 2000 to 2010 is 100. The program is loaded from the memory location 1000. All the numbers are in decimal.

- 71. Assume that the memory is word addressable. The number of memory references for accessing the data in executing the program completely is:
 - (A)
- 10

100

- (B)
- (C)
- 20 (D)
- 72. Assume that the memory is word addressable. After the execution of this program, the content of memory location 2010 is:
- (B)
- 101


11

- (C)
- 102 (D)
 - 110
- Assume that the memory is byte addressable and the word size is 32 bits. If an interrupt occurs during 73. the execution of the instruction "INC R3", what return address will be pushed on to the stack?
 - (A)

- 1020 (C)
- 1024 (D)
- 1040

Common Data for Questions 74, 75:

Consider the following Finite State Automaton:

- 74. The language accepted by this automaton is given by the regular expression
 - (A) b* ab* ab* ab*

(B) (a + b) *

(C) $b^* a(a + b)^*$

- (D) b* ab* ab*
- 75. The minimum state automaton equivalent to the above FSA has the following number of states
 - (A)
- (B)
- (C)
- 3 (D)

Linked Answer Questions: Q.76 to Q.85 Carry Two Marks Each

Statement for Linked Answer Questions 76 & 77:

Suppose the letters a, b, c, d, e, f have probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, respectively.

- 76. Which of the following is the Huffman code for the letter a, b, c, d, e, f?
 - (A) 0, 10, 110, 1110, 11111
 - (B) 11, 10, 011, 010, 001, 000
 - (C) 11, 10, 01, 001, 0001, 0000
 - (D) 110, 100, 010, 000, 001, 111
- 77. What is the average length of the correct answer to Q.76?
 - (A) 3
- (B) 2.1875
- (C)

2.25

(D) 1.9375

Statement for Linked Answer Questions 78 & 79:

Consider the CFG with {S A B} as the non-terminal alphabet, {a b} as the terminal alphabet, S as the start symbol and the following set of production rules:

$S \rightarrow aB$	$S \rightarrow bA$
$B \rightarrow b$	$A \rightarrow a$
$B \rightarrow bS$	$A \rightarrow aS$
$B \rightarrow aBB$	$S \rightarrow bA$

- 78. Which of the following strings is generated by the grammar?
 - (A) aaaabb (B)
- aabbbb(C)
- aabbab (D)
- abbbba
- 79. For the correct answer strings to Q.78, how many derivation trees are there?
 - (A)
- 1
- 2
- (C)
- 3
- 4

Statement for Linked Answer Questions 80 & 81:

Consider a machine with a byte addressable main memory of 2¹⁶ bytes. Assume that a direct mapped data cache consisting of 32 lines of 64 bytes each is used in the system. A 50 × 50 two-dimensional array of bytes is stored in the main memory starting from memory location 1100H. Assume that the data cache is initially empty. The complete array is accessed twice. Assume that the contents of the data cache do not change in between the two accesses.

80.	How	many data	cache misses	will occur	in total?		
	(A)	48	(B)	50		(C)	

(A)

(B)

(C)

56

59 (D)

81. Which of the following lines of the data cache will be replaced by new blocks in accessing the array for the second time?

(A)

line 4 to line 11

line 4 to line 12

(C) line 0 to line 7 line 0 to line 8

Statement for Linked Answer Questions 82 & 83:

A process has been allocated 3 page frames. Assume that none of the pages of the process are available in the memory initially. The process makes the following sequence of page references (reference string): 1, 2, 1, 3, 7, 4, 5, 6, 3, 1

82. If optimal page replacement policy is used, how many page faults occur for the above reference string?

(A)

10

83. Least Recently Used (LRU) page replacement policy is a practical approximation to optimal page replacement. For the above reference string, how many more page faults occur with LRU than with the optimal page replacement policy?

(A)

0

(B)

(D) 3

Statement for Linked Answer Questions 84 & 85:

Suppose that a robot is placed on the Cartesian plane. At each step it is allowed to move either one unit up or one unit right, i.e., if it is at (i, j) then it can move to either, (i + 1, j) or (i, j + 1).

84. How many distinct paths are there for the robot to reach the point (10, 10) starting from the initial position (0, 0)?

(A)

(B)

(D) None of the above

85. Suppose that the robot is not allowed to traverse the line segment from (4, 4) to (5, 4). With this constraint, how many distinct paths are there for the robot to reach (10,10) starting from (0,0)?

(A)

End of question papers